
JOURNAL OF COMPUTATIONAL PHYSICS 60, 561-564 (1985) 

Note 

The Numerov Method and Singular Potentials* 

One of the most efficient and simple methods to determine numerically the eigen- 
values of the radial Schrodinger equation y” + (V- E)y = 0 is the Numerov 
method. It consists in a three-point integration rule 

=h*(V,-E)& (1) 

which allows the determination of the eigenvalues E by means of the following 
algorithm. Assume a trial value E and the values y, = 0 and Y,,- i = c, some 
arbitrary constant. Then repeatedly use Eq. (1) up to n = 1. At n = 1 Eq. (1) deter- 
mines y,, the radial function at r = 0, and the trial value E will be the correct one if 
the last value y, is null. The precise value of E is obtained starting from two trial 
values E, (whose corresponding y, is positive) and E, (whose corresponding y0 is 
negative) and interpolating repeatedly. In the above algorithm we must also input a 
given value R = Nh, a maximum distance from which the radial function may be 
considered negligibly small. The parameter h is the step size of the mesh used for 
the integration. 

The above algorithm corresponds to an inwards integration, going from far away 
to the origin. Other strategies for the application of Eq. (1) may also be used 
(outwards integration, mixed forms, and matrix methods). 

It has been shown [ 1,2] that in most cases Eq. (1) determines the eigenvalue 
with an error proportional to h4, so that a subsequent application of the 
Richardson extrapolation technique produces very precise results [2, 31. It is also 
worth mentioning a simple modification of the Numerov method due to 
Killingbeck [4] which gives an energy error of order h6 for smooth nonsingular 
potentials. However, when Numerov’s algorithm is applied to the Coulomb [2] 
potential, the resulting eigenvalues have an error proportional to h*, as in the case 
of the simple central differences method where the second derivative is 
approximated by the operator 6*/h*. 

Johnson [S] recognized the need of introducing some special corrections to the 
above algorithm in the case of singular potentials, particularly in the s-wave states 
of potentials which behave at short distances like l/r and the p-wave states of any 
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potential. In these cases to correctly apply Eq. (1) we need to know the limit 
V(r) y(r) at r = 0, and this is just the quantity we are interested in to determine E. 
In the case of the Coulomb potential Johnson [S] describes a simple tecnique to 
overcome this problem which consists in determining analytically the above limit, 
using that result to carry out the integration outwards. However, this approach 
cannot be applied in cases where the potential is not known analytically, as hap- 
pens in the successive iterations of a Hartree-Fock calculation. 

We have found a simple method which solves this trouble numerically, and which 
produces impressively good results in some well-known problems. Equation (1) is 
used in the inwards direction to determine the radial function at the points yN, 
YN-lY7Y3? Y2, and y,. Then the prediction for y, is obtained as follows. Taking 
into account the points y,, y,, and y, the relation 

d2y, = h2y;’ + h4y312 + 0(/P) (2) 

is easily obtained. Then y” is written in terms of the second derivatives of the radial 
function at y,, y,, and y,, 

h’yl;y = d2y; + O(P) 

arriving finally at the relation 

d2y, = h2y;’ 4 /z%‘y;/12 + O(V) (3) 

to be compared with the standard Numerov method 

b2y, = /z2y; + /r’s2y;/12 + O(P). (4) 

Equation (3) permits the determination of y, in a form which does not involve 
the value of y[, the unknown quantity when dealing with singular potentials. In 
practical applications, all second derivatives appearing in Eqs. (3) and (4) are com- 
puted with the help of the differential equation y” = (V-E) y. 

Equation (3) is a four-point relation, but this creates no troubles as far as the 
integration is carried out inwards. Actually, all step-by-step integration is done 
using either Eq. (4) or Eq. (l), which are the same, and only at the last step is 
Eq. (3) to be used. 

To show the dramatic effect of this correction to the standard Numerov method 
we have plotted the values of the error as a function of the step size in several cases. 
Figure 1 refers to the s-wave ground state of two singular potentials, Coulomb and 
Yukawa potentials. Figure 2 refers to two cases where the dominant singularity 
comes from the centrifugal barrier. In both cases we have plotted the base 10 
logarithm of the absolute value of the error versus the base 10 logarithm of the step 
size. Note that the values of the error corresponding to the dashed lines of Fig. 2 
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change their sign at a particular value of the step size h, and the cusps correspond 
to a null error. Precise details of the calculations are presented in Table I. 

Both figures show an impressive gain of precision of several orders of magnitude 
due to our simple modification. 
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FIG. 1. Plot of the logarithm of the absolute error of the eigenvalue as a function of the logarithm of 
the step size. The continuous lines correspond to the calculation using the standard Numerov method, 
and the dashed lines the calculations with our modification. The letters C and Y refer to Coulomb and 
Yukawa s-wave potentials, respectively. Details of the calculations are presented in Table I. 

log A 

-8 

-6 

-4 

-2 

-1.2 log h -2.0 

FIG. 2. Same as Fig. I but corresponding to the p-wave harmonic oscillator potential (H) and p- 
wave Coulomb potential (Y). 
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TABLE I 

Effective Potentials Used in the Calculations Shown in Figs. 1 and 2” 

Potential R Exact value Figure 

Coulomb -2/r 16 -1 I 
Yukawa - 10 exp( -~)/r 8 -16.3404255695" I 
Coulomb p-wave -2/r+ 2/r? 32 -0.25 2 
H oscillator p-wave r2+2p 8 5 2 

a The value of R, the exact value, and the corresponding figure are included in the table 
h Value from Ref. 161. 
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